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SUMMARY

We explore the concept of effective hydraulic conductivity for a bounded randomly
heterogeneous formation under steady-deate flow regime. The novety of our study condsts of
edablishing a tensorid naure of the effective conductivity. This occurs even for localy
isotropic  conductivity fidds. Neuman and Orr [1] have demondrated that stochadticaly
averaged flow egquations are nonlocd and nonDacian, 0 tha effective hydraulic
conductivity does not generaly exis. We derived our andytical expresson for the effective
conductivity tensor by locdizing these equations, and assessed the accuracy of this
goproximation by compaing the resulting hydraulic heads and fluxes with ther non-locd
counterparts.  Our solutions are in a good agreement with both recursve nonloca finite-
dements results of Guadagnini and Neuman [3] and Monte Carlo smulaions for mildly and
srongly heterogeneous formations.

1. INTRODUCTION AND PROBLEM STATEMENT

Consder steady-state groundwater flow described by a combination of Darcy’s law and
conservation of mass

- N:g(x) + f(x)=0; q(x) =- K(x) Nh(x); xT W 1)
subject to the boundary conditions
h(x) = H(x), xT Go; - (%) xn(x) = Q(X); xT Gy )

Here q(x) is the Darcy’'s flux, K(x) is the hydraulic conductivity, h(x) is the hydraulic heed, f(x)
is the source term, H(X) is the prescribed head on Dirichlet boundary segments Gp, Q(X) is the
prescribed flux across Neumann boundary segments Gy, and n(x) is the unit outward norma to
the boundary G= Gp E Gy of the fow domain W. All quantities are representative of a nonzero
support volume w << W centered about X, which is sufficiently large for Darcy’s law to be
locdly vadid. We treat hydraulic conductivity, K(x), as a random fied, so that (1) - (2
condtitute a system of stochagtic partid-differentia equations.



Neuman and Orr [1] and Tartakovsky and Neuman [2] have developed conditiona moment
equations for groundwater flow in randomly heterogeneous formations under Steady-state and
trangent conditions, respectively. Guadagnini and Neuman [3, 4] have solved the steady-dtate
moment equations numericaly by reying on recursve goproximations of Tartakovsky and
Neuman [2]. In ther analyses, the unbiased flux estimator is obtained by taking the ensemble
mean of Darcy’slaw (1),

<q(x)>=- <K(x)> N <h(x)> +r(x).

Here r(x) is the so-cdled “resdud” flux, whose exact form is given in [1, 2]. For practica
evauation of this term it has been found necessary to employ perturbation analyss in a smal
paaneter s’ the variance of a datisticaly homogeneous random fidd of (naurd) log
hydraulic conductivity Y(x) =InK(x). This leads to perturbation expansons of the mean
hydraulic heed and flux, <h(x)> = <h©@x)> + <h®P(x)> + O(s*) and <(x)> = YOX)> +
<qP(x)> + O(s?). Reaining the first two terms in these expansons gives the first-order
goproximation of the mean Darcy’slaw [2 - 4],

<qt(x)> = <@ (x)> + <qP(x)>
where
<q2x)> = - Kg NhOx);  <q®x)>=- Kg [NhD(x) + (s%/2) NhO(x)] + rP(x).

Here Kg = exp<Y> is the geometric mean of Y, the zeroth-order mean head h(© satisfies 51) -
(2) where K(x) is replaced by Kg, and the first-order approximation of the residua flux rY(x)

Isgiven by

r®(x) = a(y, x) Nh©(y) dy
w (3

where
a(y, ) = K2 Culy, x) N Ky" G(y, x),

Cy(y, x) is the spatid autocovariance of Y, and G is the determinigtic Green’s function for (1) —
(2) where K(x) isreplaced by Kg. For the expansons of the mean hydraulic head and fluxes to
reman asymptotic it is necessary that s®<<1, i.e the porous medium to be mildy
heterogeneous.  Nevertheess, numericd smulations of Guadagnini and Neuman [3, 4] have
demondtrated that our firg-order gpproximations yield remarkably accurate results for strongly
non-uniform mediawith s 2 as large as 4.

Snce flux esimators r(x) and <q(x)> ae generdly nonlocd and non-Darcian, the notion of
effective conductivity looses its meaning in al but a few specid cases [1, 2, 5, 6]. Tartakovsky
and Neuman [5, 6] have explored a few speciad sStuaions where locdization of the above flux
predictors is possble and have andyzed the corresponding effective conductivity. Among this
flow scenarios the case of the dow-varying mean head gradient has been $udied most. Under
this assumption, one can approximate (3) as



rAx) » k®(x) Nh© (4)

where

kWx) = K& &, (v, x) N, RTG(y, x) dy. (5)
W

Then

<gt¥(x)>» - Kg N<h®(x)>- K& RNhO(x); KE = Ke[1+(s22]1- kPx) (6

Guadagnini and Neuman [3, 4] have shown tha a locdized verson of the mean flow equations
provides quite accurate estimates of hydraulic heads and fluxes when compared to Monte Carlo
results.

For flow through infinite, dtatigicdly homogeneous porous media under mean uniform flow
conditions, the mean hydraulic head gradient J = Nh®, and Nh® = 0 for i > 0 [1]. Then
<qM(x)> » - K@ J,with K playing the role of a bona fide effective hydraulic conductivity.
However, Guadagnini and Neuman [3, 4] showed tha for bounded domains N<h®(x)>1 0

even when Nh(© is constant. Thus, the locdlization of the second order mean flow equation in
the manner of (4) — (6) does not imply that <q'*(x)> is Darcian.

Guadagnini and Neuman [3, 4] have demongtrated numericaly that N<h®(x)> << Nh@(x) at
locations far away from sgngulaities (e.g. pumping/injection wdls). Then one can write

<! x)> » - K Nh©(x). Tartakovsky and Neuman [5] have considered mean uniform flow

through a box-shgped doman and evduated numericdly the component of K(Eﬁ in the

direction of the mean flow. Here we explore andyticdly the tensorid naure of the effective
parameter in (6) for atwo-dimensona case.

2. EFFECTIVE CONDUCTIVITY FOR A RECTANGLE

Here we present an andytica expresson for effective hydraulic conductivity tensor under two-
dimensond dseady-date flow through a rectangle due to a uniform mean hydraulic gradient.
The rectangle is embedded within a datigticaly homogeneous fiedd Y that is Gaussan and
exhibits an isotropic separated exponentid auto-corrdation dructure. The ddes of the
rectangle are a and b in x; and x, directions respectivdly. In dimengonless coordinates
X, =Xi/a, and X, = X»/b, boundary conditions are taken as

h=Hy; for x; =0; h=Hy; for x;=1;
Thx)/1x,=0; for x,=0and x,=1.

Here H; and H, are determinidtically prescribed hydraulic heads.  Upon introducing e =b/ a,
and dimensonlessvariables y; =y, /a, Y, =Y, / b, the auto-covariance function is written as



Cy(y*, x*) =s”r(y*, x*); ry*,x*) =expé

whee | *=| /a, and | is the corrdation scde. The Green's function, Gk = Kg G, is now
given by

2 & q,(y5.%) sn (pnx) sn (pny;)
G  X*) =— .
(Y5 x7) pna:‘1 n snh (pne)

(8)

iy X*)_i,cosh (pne X, - 1]) cosh (pney,) O£y, £ X,
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Figure 1. Contour maps of the components k;; (x*) normaized by Kg s (@) ki1, (b) ki, (€)
k21, and (d) k. The parametersaree =1 and| * = 0.5.



Subdtituting (7) and (8) into (5) leads to the expressions for the four components kj of the
tensor k™.  The anayticd expresson for ki; is given below (the superscript * is omitted),
while Figure 1 depicts contour plots of dl k;j, evaluated fore =1and| * = 0.5.
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It is clear from Figure 1 that &l four components of the second-rank tensor k¥ are space-
dependent and are symmetric with respect to the domain center. The tensor k™ is non
symmetric and diagondly-dominant dmost everywhere, with non-diagona terms kjj =0 ( * j)
a the doman center. Hence, the first-order approximation of the stochadticadly derived
effective conductivity tensor is generdly non-symmetric.
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Figure 2. Longitudina section (at X, = 0.5) of ky1/ K s2 for e = 1 and severa vauesof | *,

The boundary effects are reveded on Figure 2 which depicts the longitudina cross-section (at
X, =0.5) of ki1/Kgs? for e=1 and severd vaues of | *. As the domain size increases ( *
decreases), ki1/Kgs? ® 05. This is in agreement with well-established results for infinite

domain [1]. Indeed, it follows from (16) thatK,,® Kg as | */a® 0. Although not shown



here, kiz=kz1 =0 and kx/Kgs? = 05 a every point in the domain, as | */a® 0. Thus
anisotropy of the effective conductivity stems from the presence of boundaries. These
boundary effects aso cause the effective conductivity tensor to be non-symmetric.

3. CONCLUSIONS

Our work leads to the following mgor conclusions:

1.

Stochadticaly averaged flux is generdly nonlocal and nontDarcian, so that an effective
hydraulic conductivity cannot be defined except in specid cases. To derive an andyticd
expresson for the effective conductivity, we adopted a first-order (in variance s? of log
hydraulic conductivity Y) perturbation analysis and locdization of the mean flow equation.

Firg-order approximation, KLY, of the effective conductivity tensor for two-dimensiond

steady-dtate flow through a rectangle due to a uniform mean hydraulic gradient is gnerdly
non-symmetric and diagondly-dominant.

Anisotropy of the effective conductivity stems from the presence of boundaries. These
boundary effects dso cause the effective conductivity tensor to be nonsymmetric. As the
domain sSze, expressed in terms of corrdation lengths of Y, increases, the diagona terms of

K,[j tend to the geometric mean of hydraulic conductivity; its cross-diagona terms tend to
zero.
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